Emotions in a repeated Cournot game A psychophysiological experiment

Ilkka Leppänen and Raimo P. Hämäläinen Systems Analysis Laboratory Aalto University

July 14, 2014

Why study emotions in OR?

- To understand behavior in decision and negotiation support
- Are some processes or models emotionally better/worse; or more acceptable/stimulating than others?
- To understand the impact of different ways of communication
- Take into account the role of emotions in developing modeling and decision support approaches

Do emotions play a role in cooperation?

- It is known that subjects cooperate in repeated interactions; two explanations:
 - Reputation seeking: entirely self-regarding
 - Reciprocal fairness: other-regarding (Sobel, 2005, Bowles and Gintis, 2011)
- Standard methods in experimental economics cannot distinguish other-regarding behavior from self-regarding behavior in repeated interactions (Fehr, 2009)

Measuring emotions can reveal whether cooperation is other-regarding or self-regarding

Emotions

- Changes in **bodily states**, triggered by the brain
- Responses to actual or recalled perceptions
- Operate alongside cognition
- Not necessarily observable from outside

Can be studied by

- Neurophysiology (brain imaging)
- Self-reports
- Psychophysiological methods

Arousal

- A bodily response that prepares the subject to act (Bechara and Damasio, 2005)
- Activation of the autonomic nervous system leading to a condition of sensory alertness, mobility and readiness to respond
- Arousal occurs when a subject experiences as well as anticipates situations

We measure by the **skin conductance response** (SCR)

Emotional expressions

- Have both functional and communication roles
- Can accompany both real and abstract stimuli

We measure by facial surface electromyography (EMG)

Anger

Disgust

Positive affect

Muscles related to emotional expressions

Earlier research on emotions in games

- Ultimatum games:
 - Chapman et al. (2009): the responder's disgust is higher for unfair offers than for fair offers
- Public goods games:
 - Joffily et al. (2011): arousal is higher when the subject does not cooperate and when the subject learns that he has cooperated less than others
- Other:
 - Ben-Shakhar et al. (2007): arousal is related to punishments in a power-to-take game
 - Cannon et al. (2011): anger, disgust, and positive affect predict moral judgements

Our experiment: repeated Cournot game

"Example of human conflict between cooperation and defection" (Fouraker and Siegel, 1963)

- Step 1: indicate your ideal result
- Step 2: choose your production quantity
- Step 3: view results
- Repeated for 20 rounds, duration not known by the players

Payoff matrix

Payoff increases as the other's production quantity decreases, and vice versa

Production quantity	3		4		5		6		7		8		9		10		11		12		13		14		15	
3	54	54	51	58	48 8	45	90	42	98	39	104	36	108	33	109	30	110	27	108	24	104	21	98	18	90	
4	68	51	64	54	60 7	56	84	52	91	48	96	44	99	40	100	36	99	32	96	28	91	24	84	19	75	
5	80	48	75	50	70 7	65	78	60	84	55	88	50	89	45	90	40	88	35	84	29	78	25	70	20	60	
6	90	45	84	56	78 6	72	J ₇₂	66	77	60	80	54	81	48	80	41	77	36	72	30	65	24	56	18	45	
7	98	42	91	52	84 6	77	66	70	70	63	72	55	71	49	70	42	66	35	60	28	52	21	42	14	30	
8	104	39	96	18	88 5	80	60	72	63	⁶⁴	N ₆₄	56	63	48	60	40	55	32	48	24	39	16	28	8	15	
9	108	36	99	14	89 5	81	54	71	55	63	56	54	54	45	50	36	44	27	36	18	26	9	14	0	0	
10	109	33	100	10	90 4	80	48	70	49	60	48	50	45	40	40	30	33	20	24	10	13	0	0	-10	-15	
11	110	30	99	36	88 4	77	41	66	42	55	40	44	36	33	30	22	22	11	12	0	0	-11	-14	-22	-30	
12	108	27	96	32	84 3	72	36	60	35	48	32	36	27	24	20	12	11	0	0	-12	-13	-24	-28	-36	-45	
13	104	24	91	28	78	65	30	52	28	39	24	26	18	13	10	0	0	-13	-12	-26	-26	-39	-42	-52	-60	
14	98	21	84	24	70 2	56	24	42	21	28	16	14	9	0	0	-14	-11	-28	-24	-42	-39	-56	-56	-70	-75	
15	90	18	75	19	60 2	45	18	30	14	15	8	0	0	-15	-10	-30	-22	-45	-36	-60	-52	-75	-70	-90	-90	

J = joint-optimum (72,72), N = Cournot-Nash equilibrium (64,64)

Experimental arrangement

Pilot subject demonstrating the equipment

- 44 subjects (24 female)
- Mean age 26.05
- One pair at a time
- Complete anonymity
- Mean reward 22.26 eur

Scoring and analysis of the signals

- Arousal: integrated SCR (Benedek and Kaernbach, 2010) over a 5 s time window when the subject sees the results
- Anticipatory arousal: sum of SCR amplitudes over a varying-length time window during decision making, divided by the length of the time window
- Anger, disgust, positive affect: mean EMG amplitude over a 5 s time window when the subject sees the results

Explanatory variables

- Fair result: own payoff at least as high as the other's payoff
- Payoff share: own payoff divided by the sum of own and the other's payoff
- Own ideal payoff difference: own payoff minus own ideal payoff
- Other's ideal payoff difference: the other's payoff minus ideal payoff to the other
- Own choice: if high, the subject is not cooperative
- Other's previous round choice: if high, the other is not cooperative
- Gender
- Round of play

Cournot game: not much cooperation

Only two pairs out of 22 cooperate for more than two consecutive rounds

- Mean payoff 55.24, lower than the Cournot equilibrium payoff (64)
- Less cooperation than in similar Cournot duopoly experiments of Huck et al. (2001) and Potters and Suetens (2013)
- Possibly explained by complete anonymity in the experiment

Arousal higher in fair than in unfair results

p=0.0017

own choice

other's previous round choice

Arousal and anticipatory arousal

- Arousal is high in fair results and with high payoff share, but also when own payoff is less than the ideal payoff
- Anticipatory arousal is high when the subject makes less cooperative decisions
- Anticipatory arousal is high when the other's previous round decisions are more cooperative
- Gender effect: higher for males
- Habituation: decrease in time

Disgust and pos. affect are higher in fair results

Anger

Increases as payoff share increases

- i.e. the higher the relative payoff, the more there is anger
- Positive and negative affect (anger) are not mutually exclusive: the corrugator supercilii muscle can measure both (Ito et al. 1998)
- Increases as the subject gets less payoff than the ideal, and as the other gets more payoff than the ideal

Disgust and positive affect

- Do not depend on payoff share
- There is possibly correlation between disgust and positive affect
 - Disgust and positive affect are higher in fair results
 - Disgust and positive affect are higher when the other gets less payoff than the ideal

Relationship to earlier studies

- Anticipatory arousal: similar results as in Joffily et al. (2011) who find that less cooperative decisions elicit higher anticipatory arousal
- Disgust in unfair results: we find opposite results than Chapman et al. (Science, 2009)
 - They measure disgust, not positive affect
 - We do not deceive subjects and use fake opponents as they do, and therefore our experiment is more reliable

Conclusions

- Fair behavior of the other player elicits arousal
- Anticipatory arousal is related to own noncooperative behavior
- Subjects get angry if they get less than their ideal payoffs, and when the other gets more than their ideal payoffs
- These results imply that subjects are not entirely self-regarding in cooperative situations
- Emotions should receive more interest in OR
- The psychophysiological measurement method suits well for studying emotions in group decision making

References

- Bechara, A., and Damasio, A.R. 2005. The somatic marker hypothesis: A neural theory of economic decision. Games and Economic Behavior 52(2)
- Benedek, M., and Kaernbach, C. 2010. Decomposition of Skin Conductance Data by Means of Nonnegative Deconvolution. Psychophysiology 47.
- Ben-Shakhar, G., Bornstein, G., Hopfensitz, A., and van Winden, F. 2007. Reciprocity and Emotions in Bargaining Using Physiological and Self-Report Measures. Journal of Economic Psychology 28(3)
- Bowles, S., and Gintis, H. 2011. A Cooperative Species. Human Reciprocity and its Evolution. Princeton, NJ: Princeton University Press.
- Cannon, P.R., Schnall, S., and White, M. 2011. Transgressions and Expressions: Affective Facial Muscle Activity Predicts Moral Judgments. Social Psychological and Personality Science 2(3)
- Chapman, H.A., Kim, D.A., Susskind, J.M., and Anderson, A.K. 2009. In Bad Taste: Evidence for the Oral Origins of Moral Disgust. Science 323
- Huck, S., Müller, W., and Normann, H-T. 2001. Stackelberg Beats Cournot: On Collusion and Efficiency in Experimental Markets. The Economic Journal 111

References

- Fehr, E. 2009. Measuring Social Preferences, in Glimcher, P.W., Camerer C.F., Fehr, E., and Poldrack, R.A. (eds.), Neuroeconomics: Decision Making and the Brain, London, UK: Academic Press
- Fouraker, L. and Siegel, S. 1963. Bargaining Behavior, New York: McGraw-Hill
- Ito, T. A., Cacioppo, J. T., and Lang, P. J., 1998. Eliciting affect using the International Affective Picture System: Bivariate evaluation and ambivalence. Personality and Social Psychology Bulletin 24.
- Joffily, M., Masclet, D., Noussair, C.N., Villeval, M-C. 2011. Emotions, Sanctions and Cooperation. IZA Discussion Paper No. 5592
- Potters, J., and Suetens, S. 2013. Oligpoly Experiments in the Current Millennium. Journal of Economic Surveys 27(3)
- Sobel, J. 2005. Interdependent Preferences and Reciprocity. Journal of Economic Literature 43(2)

